

2.0 Vehicle Systems

HWCI 2.2.2 Ballast Subsystem

- Requirements Traceability
 - 2.1.2, 2.2.1.1, 2.2.1.3
- Functional and Performance Requirements
 - 2.2.2.a: Provide a repository for ballast material
 - 2.2.2.b: Provide a method for releasing ballast at a controlled rate upon command
 - 2.2.2.c: Maintain functionality and structural integrity in ULDB environment for mission duration
- HWCI Description
 - Use standard LDB ballast hopper and valves
 - Weight: 7 lb total

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.2.2 Ballast Subsystem

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Valve failure
 - Redundant valves
 - Risk: Hopper structural failure
 - Multiple attachment points
- Verification

Req. No.	Requirement	Verification Method
2.2.2.a	Ballast Storage	Calculation
		Demonstration
		Test Flight(s)
2.2.2.b	Ballast Release	Thermal Analysis
		Thermal Vacuum Functional Test
		Test Flight(s)
2.2.2.c	Structural Integrity	Material UV Exposure Analysis
		Material UV Exposure Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.3.1 Parachute System

- Requirements Traceability
 - -2.3, 2.4.1
- Functional and Performance Requirements
 - 2.3.1.a: Provide safe, controlled payload descent from termination altitude to ground impact
 - 2.3.1.b: Maintain functionality and structural integrity in ULDB environment for mission duration

2.0 Vehicle Systems

HWCI 2.3.1 Parachute System

Trade Studies

	Postomono on one	Nati Concons	S. S.	Power	Interfaces	Š	Pist.	Schoolile	Weight	Score
weight	1.5	2	1	1	1	1.5	2	2	1.5	
Enveloped Flat Circular	7	10	4	10	9	7	8	8	8	108
Flat Circular, As Is	7	3	5	10	10	9	9	10	9	106.5
Packed Flat Circular	7	8	8	9	8	7	7	7	8	102
Packed 2-Stage System	9	8	7	9	8	5	6	6	8	97
GPS-Guided Parafoil	10	8	3	7	5	3	3	3	4	68.5

2.0 Vehicle Systems

HWCI 2.3.1 Parachute System

HWCI Description

- Parachute shall be 120-foot-diameter flat circular design commonly used on conventional balloons
- Parachute will be enshrouded in a 6-ft-dia. protective sleeve of 1-mil opaque polyethylene material to lower UV exposure of parachute materials
- Sleeve will be suspended from a spreader ring attached to the upper termination fitting
- Sleeve will be of sufficient length to conceal parachute canopy and suspension lines
- Weight: 494 lb

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.3.1 Parachute System

- Risk Assessment & Mitigation/Reliability
 - Proven parachute design
 - New sleeve design
 - Risk: Structural failure or improper inflation of parachute
 - No mitigation

• Verification

Req. No.	Requirement	Verification Method
2.3.1.a	Controlled Descent	Descent Analysis
		Inspection
		Subscale Sleeve Tests
		Test Flight(s)
2.3.1.b	Structural Integrity	Material Exposure Analysis
		Pull Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.3.2 Land Impact Attenuator

- Requirements Traceability
 - -2.3
- Functional and Performance Requirements
 - 2.3.2.a: Minimize land impact damage
 - 2.3.2.b: Maintain functionality and structural integrity in ULDB environment for mission duration
- Trade Studies

	Performance	Weight	Size	Cost	Schedule	Power	Interfaces	Risk	Score
weight	2	2	1	2	2	1	1	2	
Aluminum Honeycomb	5	5	5	4	5	5	5	5	63
Paper Honeycomb	4.5	5	4	5	5	5	5	5	63
Air Bags	4	3	5	3	3	4	3	3	44

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.3.2 Land Impact Attenuator

HWCI Description

- Four each 1-cubic-foot aluminum honeycomb cubes affixed to gondola legs
- Weight: 4 lb total
- Risk Assessment & Mitigation/Reliability
 - Standard sounding rocket impact attenuator
 - Risk: Insufficient attenuation
 - No mitigation

Verification

Req. No.	Requirement	Verification Method
2.3.2.a	Impact Attenuation	Strength Analysis
		Drop Test(s)
		Test Flight(s)
0.0.0.1	01	NAME OF THE PARTY AND ADDRESS.
2.3.2.b	Structural Integrity	Material Exposure Analysis
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.4.1 Terminate Fitting

- Requirements Traceability
 - -2.4.2, 3.9.2
- Functional and Performance Requirements
 - 2.4.1.a: Provide separation of payload from balloon upon command
 - 2.4.1.b: Maintain functionality and structural integrity in ULDB environment for mission duration
- HWCI Description
 - Use standard LDB terminate fitting
 - Weight: TBD lb

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.4.1 Terminate Fitting

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Failure to separate
 - Redundant separation pyros and circuits
 - Risk: Premature separation
 - No mitigation
 - Risk: Structural failure
 - No mitigation
- Verification

Req. No.	Requirement	Verification Method
2.4.1.a	Payload Separation	Functional Test
		Test Flight(s)
2.4.1.b	Structural Integrity	Structural Analysis
		Thermal Analysis
		Thermal/Load Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.4.2 Parachute Release

- Requirements Traceability
 - -3.9.2
- Functional and Performance Requirements
 - 2.4.2.a: Provide separation of parachute from payload after land impact
 - 2.4.2.b: Maintain functionality and structural integrity in ULDB environment for mission duration
- HWCI Description
 - Use standard LDB parachute release
 - Weight: TBD lb

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.4.2 Parachute Release

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Failure to separate
 - No mitigation
 - Risk: Premature separation
 - Mechanical fail-safe for inadvertent pyro firing
 - Risk: Structural failure
 - No mitigation
- Verification

Req. No.	Requirement	Verification Method
2.4.2.a	Parachute Release	Functional Test
		Test Flight(s)
0.4.0.1	0	
2.4.2.b	Structural Integrity	Structural Analysis
		Thermal Analysis
		Thermal/Load Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.4.3 Cable Ladder

- Requirements Traceability
 - -2.4.1, 2.4.3
- Functional and Performance Requirements
 - 2.4.3.a: Provide structural system between the balloon and the payload that also exhibits torsional resistance
 - 2.4.3.b: Maintain structural integrity in ULDB environment for mission duration
- HWCI Description
 - Use standard LDB cable ladder design
 - Weight: TBD lb
 - Length: TBD ft

2.0 Vehicle Systems

HWCI 2.4.3 Cable Ladder

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Structural failure
 - Redundant attachments between payload and balloon
- Verification

Req. No.	Requirement	Verification Method
2.4.3.a	Mechanical Interface	Inspection
		Test Flight(s)
2.4.3.b	Structural Integrity	Structural Analysis
		Thermal Analysis
		Load Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.4.4 Truck Plate

- Requirements Traceability
 - None
- Functional and Performance Requirements
 - 2.4.4.a: Provide flight train interface between cable ladder and azimuth pointing system
 - 2.4.4.b: Provide interface between balloon vehicle and launch vehicle
 - 2.4.4.c: Maintain structural integrity in ULDB environment for mission duration
- HWCI Description
 - Use standard LDB truck plate
 - Weight: TBD lb

2.0 Vehicle Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 2.4.4 Truck Plate

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Structural failure in flight
 - Redundant attachments between payload and flight train
 - Risk: Structural failure on ground
 - No mitigation
- Verification

Req. No.	Requirement	Verification Method
2.4.4.a	Mechanical Interface	Inspection
	(Ladder to Rotator)	Test Flight(s)
2.4.4.b	Mechanical Interface	Inspection
	(Balloon to Launcher)	Test Flight(s)
2.4.4.c	Structural Integrity	Structural Analysis
		Load Test
		Test Flight(s)

2.0 Vehicle Systems

HWCI 2.4.5 Strobe Light

- Requirements Traceability
 - -2.4.4
- Functional and Performance Requirements
 - 2.4.5.a: During ascent, provide visual indicator of balloon location to aircraft below 35,000 ft MSL
 - 2.4.5.b: Maintain functionality throughout appropriate ascent period
- HWCI Description
 - Use standard LDB strobe light
 - Weight: TBD lb

2.0 Vehicle Systems

HWCI 2.4.5 Strobe Light

- Risk Assessment & Mitigation/Reliability
 - Proven design
 - Risk: Strobe failure
 - No mitigation
- Verification

Strobe Lig	ht	
Rea No	Requirement	Verification Method
1104. 110.	i toquii omoni	V CITITOUTION INICTITOU
2.4.5.a	Visual Indication	Functional Test

3.1 Power Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.1.4 PV Array Structure & Deployment

- Requirements Traceability
 - None
- Functional and Performance Requirements
 - 3.1.4.a: Provide mounting platform for 212 sq-ft of photovoltaic cells
 - 3.1.4.b: Integrate with payload in stowed position acceptable under launch vehicle restrictions
 - 3.1.4.c: Deploy upon command at float altitude to an fixed tilt angle of 37° from vertical
 - 3.1.4.d: Provide back-up array platforms for powering critical systems
 - 3.1.4.e: Maintain functionality and structural integrity in ULDB environment for mission duration

3.1 Power Systems

HWCI 3.1.4 PV Array Structure & Deployment

Trade Studies

Array Configuration

	Az Pointing	El Pointing	Deployment				
	Complexity	Complexity	Complexity	Panel Costs	Risk	Schedule	Weight
weight	1	1	1.5	1.5	2	2	1.5
Three-Panel Hinged, Fixed Elevation	7	10	9	9	8	9	10
Single Panel from Gondola							
Equator, Fixed Elev.	7	10	7	9	6	8	9
Gondola-Mounted Twin Panels,							
Fixed Elev.	7	10	7	9	6	8	9
Omnidirectional Three-Panel							
from Gondola Equator	10	10	8	5	7	8	7
Omnidirectional Four-Panel							
from Gondola Equator	10	10	8	3	6	7	6
Gondola-Mounted Twin Panels,							
Gimbaled	7	5	7	10	5	5	9
Underslung Single Panel,							
Fixed Elev.	5	10	5	9	4	5	9
Underslung Vertical Omni Cylinder	10	10	7	1	6	5	1
Underslung Single Panel, Gimbaled	5	5	5	10	2	3	8
Underslung Omni Cone	10	10	4	3	5	4	3
Underslung Three-Panel, Fixed Elev.	10	10	4	5	3	2	5

3.1 Power Systems

HWCI 3.1.4 PV Array Structure & Deployment

- Trade Studies (con'd)
 - Panel Materials

		5	PV Cell	Galvanic	5			
	Weight	Rigidity	Interface	Corrosion	Risk	Schedule	Cost	Score
weight	1.5	1.5	1	1.5	2	2	1.5	
Aluminum Honeycomb/								
Fiberglass Skin Panel	4	4	5	5	5	4	4	48.5
Aluminum Channel Frame	5	3	5	5	4	3	4	44.5
Aluminum Honeycomb/								
Aluminum Skin Panel	3	4	4	5	4	4	3	42.5
Aluminum Honeycomb/								
Graphite Skin Panel	4	4	4	3	4	4	4	42.5

3.1 Power Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.1.4 PV Array Structure & Deployment

HWCI Description

- Three panels, 73.3 sq-ft each and all tilted 37° from vertical, will be mounted just below the gondola equator
- Panels will consist of cells bonded to honeycomb sandwich panels
- The center panel will be fixed; the adjacent panels will be attached to corresponding gondola legs with hinges
- Deployment will be initiated via pyrotechnic cutters
- Springs will deploy side panels to final position
- Side panels will be latched in final position
- Weight including cells and back-up panels: 80 lb.
- Power required for deployment: TBD

3.1 Power Systems

HWCI 3.1.4 PV Array Structure & Deployment

- Risk Assessment & Mitigation/Reliability
 - New design
 - Risk: Failure to deploy
 - Primary panels still usable for back-up power to critical systems; small (17.7 sq-ft) fourth panel will also supply back-up power
 - Risk: Structural failure upon deployment
 - Small (17.7 sq-ft each) back-up panels under deployable panels will provide back-up power to critical systems
 - Emergency restraint to prevent free-falling items

3.1 Power Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.1.4 PV Array Structure & Deployment

• Verification

Req. No.	Requirement	Verification Method	
3.1.4.a	Cell Mounting Platform	Strength Analysis	
		Thermal Analysis	
		Vendor QA	
		Inspection Load Testing Subscale Thermal Testing	
		Test Flight(s)	
3.1.4.b	Vehicle Restrictions	Inspection	
		Demonstration	
		Test Flight(s)	
3.1.4.c	Deployment	Strength Analysis	
		Inspection	
		Thermal Analysis	
		Deployment Test	
		Subscale Thermal Vac. Deployment Test	
		Test Flight(s)	
3.1.4.d	Back-up Panels	Strength Analysis	
		Thermal Analysis	
		Vendor QA	
		Inspection	
		Load Testing	
		Subscale Thermal Testing	
		Test Flight(s)	
3.1.4.e	Structural Integrity	Covered by above	

3.1 Power Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.1.4 PV Array Structure & Deployment

3.9 Mechanical Systems

HWCI 3.9.1 TIGER Gondola

- Requirements Traceability
 - -3.9.1
- Functional and Performance Requirements
 - 3.9.1.a: Provide chassis for mechanical integration of TIGER experiment and ULDB support systems, including Command/Data Module, PV arrays and other power components, telemetry antennas, sensors, and cryogenic components as needed
 - 3.9.1.b: Provide interface from gondola to flight train and vehicle systems, including ballast hopper and impact attenuation devices

3.9 Mechanical Systems

HWCI 3.9.1 TIGER Gondola

- Functional and Performance Requirements (con'd)
 - 3.9.1.c: Provide adequate protection to systems upon ground impact
 - 3.9.1.d: Maintain structural integrity in ULDB flight environment for mission duration

3.9 Mechanical Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.9.1 TIGER Gondola

HWCI Description

- Gondola structure will attach to main TIGER structural points, i.e. the two 6-inch aluminum channel crossmembers protruding from opposite sides of the sphere equator, with multi-purpose brackets
- Main platform will consist of C8x4.06 6061-T6
 aluminum channels configured in a 10-foot square
- Substructure consists of 4 each L3x3x3/8 6061-T6
 aluminum angle "legs," reinforced with L2x2x3/8 6061 T6 aluminum angle struts
- Subsystem components will be mounted on either structural members or platform grating on a case-bycase basis

3.9 Mechanical Systems

HWCI 3.9.1 TIGER Gondola

- HWCI Description (con'd)
 - Gondola will interface with the flight train via four 3/8-inch steel cables attached to multi-purpose brackets
 - Ballast hopper will be suspended below the TIGER sphere via four 3/8-inch steel cables attached to multipurpose brackets
 - Aluminum honeycomb impact attenuation devices (1 cuft each) will be attached to the bottom of each gondola leg
 - Weight: 385 lb.

3.9 Mechanical Systems

HWCI 3.9.1 TIGER Gondola

- Risk Assessment & Mitigation/Reliability
 - New design
 - Risk: Structural failure
 - Multiple attachment points to flight train and ballast hopper
- Verification

Req. No.	Requirement	Verification Method
3.9.1.a	Experiment & Subsystem Platform	Inspection
3.9.1.b	Flight Train Interface	Inspection
3.9.1.c	Impact Protection	Strength Analysis
		Test Flight(s)
3.9.1.d	Structural Integrity	Strength Analysis
		Load Testing
		Test Flight(s)

3.9 Mechanical Systems

Chris Shreves Code 546 October 14-15, 1998

HWCI 3.9.1 TIGER Gondola

